(0) Obligation:

Clauses:

append([], Ys, Ys).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).
sublist(X, Y) :- ','(append(P, X1, Y), append(X2, X, P)).

Query: sublist(a,g)

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph ICLP10.

(2) Obligation:

Clauses:

appendA([], T45, T45).
appendA(.(T50, X93), X94, .(T50, T51)) :- appendA(X93, X94, T51).
appendB([], T93, T93).
appendB(.(T101, X148), T103, .(T101, T102)) :- appendB(X148, T103, T102).
sublistC([], T16).
sublistC(T7, .(T29, T30)) :- appendA(X56, X57, T30).
sublistC(.(T72, T73), .(T72, T30)) :- appendA(T73, T39, T30).
sublistC(T86, .(T84, T30)) :- ','(appendA(T85, T39, T30), appendB(X123, T86, T85)).

Query: sublistC(a,g)

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [TOCL09]. With regard to the inferred argument filtering the predicates were used in the following modes:
sublistC_in: (f,b)
appendA_in: (f,f,b)
appendB_in: (f,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

sublistC_in_ag([], T16) → sublistC_out_ag([], T16)
sublistC_in_ag(T7, .(T29, T30)) → U3_ag(T7, T29, T30, appendA_in_aag(X56, X57, T30))
appendA_in_aag([], T45, T45) → appendA_out_aag([], T45, T45)
appendA_in_aag(.(T50, X93), X94, .(T50, T51)) → U1_aag(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
U1_aag(T50, X93, X94, T51, appendA_out_aag(X93, X94, T51)) → appendA_out_aag(.(T50, X93), X94, .(T50, T51))
U3_ag(T7, T29, T30, appendA_out_aag(X56, X57, T30)) → sublistC_out_ag(T7, .(T29, T30))
sublistC_in_ag(.(T72, T73), .(T72, T30)) → U4_ag(T72, T73, T30, appendA_in_aag(T73, T39, T30))
U4_ag(T72, T73, T30, appendA_out_aag(T73, T39, T30)) → sublistC_out_ag(.(T72, T73), .(T72, T30))
sublistC_in_ag(T86, .(T84, T30)) → U5_ag(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_ag(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_ag(T86, T84, T30, appendB_in_aag(X123, T86, T85))
appendB_in_aag([], T93, T93) → appendB_out_aag([], T93, T93)
appendB_in_aag(.(T101, X148), T103, .(T101, T102)) → U2_aag(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
U2_aag(T101, X148, T103, T102, appendB_out_aag(X148, T103, T102)) → appendB_out_aag(.(T101, X148), T103, .(T101, T102))
U6_ag(T86, T84, T30, appendB_out_aag(X123, T86, T85)) → sublistC_out_ag(T86, .(T84, T30))

The argument filtering Pi contains the following mapping:
sublistC_in_ag(x1, x2)  =  sublistC_in_ag(x2)
sublistC_out_ag(x1, x2)  =  sublistC_out_ag
.(x1, x2)  =  .(x1, x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x4)
appendB_in_aag(x1, x2, x3)  =  appendB_in_aag(x3)
appendB_out_aag(x1, x2, x3)  =  appendB_out_aag(x1, x2)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

sublistC_in_ag([], T16) → sublistC_out_ag([], T16)
sublistC_in_ag(T7, .(T29, T30)) → U3_ag(T7, T29, T30, appendA_in_aag(X56, X57, T30))
appendA_in_aag([], T45, T45) → appendA_out_aag([], T45, T45)
appendA_in_aag(.(T50, X93), X94, .(T50, T51)) → U1_aag(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
U1_aag(T50, X93, X94, T51, appendA_out_aag(X93, X94, T51)) → appendA_out_aag(.(T50, X93), X94, .(T50, T51))
U3_ag(T7, T29, T30, appendA_out_aag(X56, X57, T30)) → sublistC_out_ag(T7, .(T29, T30))
sublistC_in_ag(.(T72, T73), .(T72, T30)) → U4_ag(T72, T73, T30, appendA_in_aag(T73, T39, T30))
U4_ag(T72, T73, T30, appendA_out_aag(T73, T39, T30)) → sublistC_out_ag(.(T72, T73), .(T72, T30))
sublistC_in_ag(T86, .(T84, T30)) → U5_ag(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_ag(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_ag(T86, T84, T30, appendB_in_aag(X123, T86, T85))
appendB_in_aag([], T93, T93) → appendB_out_aag([], T93, T93)
appendB_in_aag(.(T101, X148), T103, .(T101, T102)) → U2_aag(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
U2_aag(T101, X148, T103, T102, appendB_out_aag(X148, T103, T102)) → appendB_out_aag(.(T101, X148), T103, .(T101, T102))
U6_ag(T86, T84, T30, appendB_out_aag(X123, T86, T85)) → sublistC_out_ag(T86, .(T84, T30))

The argument filtering Pi contains the following mapping:
sublistC_in_ag(x1, x2)  =  sublistC_in_ag(x2)
sublistC_out_ag(x1, x2)  =  sublistC_out_ag
.(x1, x2)  =  .(x1, x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x4)
appendB_in_aag(x1, x2, x3)  =  appendB_in_aag(x3)
appendB_out_aag(x1, x2, x3)  =  appendB_out_aag(x1, x2)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

SUBLISTC_IN_AG(T7, .(T29, T30)) → U3_AG(T7, T29, T30, appendA_in_aag(X56, X57, T30))
SUBLISTC_IN_AG(T7, .(T29, T30)) → APPENDA_IN_AAG(X56, X57, T30)
APPENDA_IN_AAG(.(T50, X93), X94, .(T50, T51)) → U1_AAG(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
APPENDA_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDA_IN_AAG(X93, X94, T51)
SUBLISTC_IN_AG(.(T72, T73), .(T72, T30)) → U4_AG(T72, T73, T30, appendA_in_aag(T73, T39, T30))
SUBLISTC_IN_AG(.(T72, T73), .(T72, T30)) → APPENDA_IN_AAG(T73, T39, T30)
SUBLISTC_IN_AG(T86, .(T84, T30)) → U5_AG(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_AG(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_AG(T86, T84, T30, appendB_in_aag(X123, T86, T85))
U5_AG(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → APPENDB_IN_AAG(X123, T86, T85)
APPENDB_IN_AAG(.(T101, X148), T103, .(T101, T102)) → U2_AAG(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
APPENDB_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDB_IN_AAG(X148, T103, T102)

The TRS R consists of the following rules:

sublistC_in_ag([], T16) → sublistC_out_ag([], T16)
sublistC_in_ag(T7, .(T29, T30)) → U3_ag(T7, T29, T30, appendA_in_aag(X56, X57, T30))
appendA_in_aag([], T45, T45) → appendA_out_aag([], T45, T45)
appendA_in_aag(.(T50, X93), X94, .(T50, T51)) → U1_aag(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
U1_aag(T50, X93, X94, T51, appendA_out_aag(X93, X94, T51)) → appendA_out_aag(.(T50, X93), X94, .(T50, T51))
U3_ag(T7, T29, T30, appendA_out_aag(X56, X57, T30)) → sublistC_out_ag(T7, .(T29, T30))
sublistC_in_ag(.(T72, T73), .(T72, T30)) → U4_ag(T72, T73, T30, appendA_in_aag(T73, T39, T30))
U4_ag(T72, T73, T30, appendA_out_aag(T73, T39, T30)) → sublistC_out_ag(.(T72, T73), .(T72, T30))
sublistC_in_ag(T86, .(T84, T30)) → U5_ag(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_ag(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_ag(T86, T84, T30, appendB_in_aag(X123, T86, T85))
appendB_in_aag([], T93, T93) → appendB_out_aag([], T93, T93)
appendB_in_aag(.(T101, X148), T103, .(T101, T102)) → U2_aag(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
U2_aag(T101, X148, T103, T102, appendB_out_aag(X148, T103, T102)) → appendB_out_aag(.(T101, X148), T103, .(T101, T102))
U6_ag(T86, T84, T30, appendB_out_aag(X123, T86, T85)) → sublistC_out_ag(T86, .(T84, T30))

The argument filtering Pi contains the following mapping:
sublistC_in_ag(x1, x2)  =  sublistC_in_ag(x2)
sublistC_out_ag(x1, x2)  =  sublistC_out_ag
.(x1, x2)  =  .(x1, x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x4)
appendB_in_aag(x1, x2, x3)  =  appendB_in_aag(x3)
appendB_out_aag(x1, x2, x3)  =  appendB_out_aag(x1, x2)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x5)
SUBLISTC_IN_AG(x1, x2)  =  SUBLISTC_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x4)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5)  =  U1_AAG(x1, x5)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x4)
APPENDB_IN_AAG(x1, x2, x3)  =  APPENDB_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x1, x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

SUBLISTC_IN_AG(T7, .(T29, T30)) → U3_AG(T7, T29, T30, appendA_in_aag(X56, X57, T30))
SUBLISTC_IN_AG(T7, .(T29, T30)) → APPENDA_IN_AAG(X56, X57, T30)
APPENDA_IN_AAG(.(T50, X93), X94, .(T50, T51)) → U1_AAG(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
APPENDA_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDA_IN_AAG(X93, X94, T51)
SUBLISTC_IN_AG(.(T72, T73), .(T72, T30)) → U4_AG(T72, T73, T30, appendA_in_aag(T73, T39, T30))
SUBLISTC_IN_AG(.(T72, T73), .(T72, T30)) → APPENDA_IN_AAG(T73, T39, T30)
SUBLISTC_IN_AG(T86, .(T84, T30)) → U5_AG(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_AG(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_AG(T86, T84, T30, appendB_in_aag(X123, T86, T85))
U5_AG(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → APPENDB_IN_AAG(X123, T86, T85)
APPENDB_IN_AAG(.(T101, X148), T103, .(T101, T102)) → U2_AAG(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
APPENDB_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDB_IN_AAG(X148, T103, T102)

The TRS R consists of the following rules:

sublistC_in_ag([], T16) → sublistC_out_ag([], T16)
sublistC_in_ag(T7, .(T29, T30)) → U3_ag(T7, T29, T30, appendA_in_aag(X56, X57, T30))
appendA_in_aag([], T45, T45) → appendA_out_aag([], T45, T45)
appendA_in_aag(.(T50, X93), X94, .(T50, T51)) → U1_aag(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
U1_aag(T50, X93, X94, T51, appendA_out_aag(X93, X94, T51)) → appendA_out_aag(.(T50, X93), X94, .(T50, T51))
U3_ag(T7, T29, T30, appendA_out_aag(X56, X57, T30)) → sublistC_out_ag(T7, .(T29, T30))
sublistC_in_ag(.(T72, T73), .(T72, T30)) → U4_ag(T72, T73, T30, appendA_in_aag(T73, T39, T30))
U4_ag(T72, T73, T30, appendA_out_aag(T73, T39, T30)) → sublistC_out_ag(.(T72, T73), .(T72, T30))
sublistC_in_ag(T86, .(T84, T30)) → U5_ag(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_ag(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_ag(T86, T84, T30, appendB_in_aag(X123, T86, T85))
appendB_in_aag([], T93, T93) → appendB_out_aag([], T93, T93)
appendB_in_aag(.(T101, X148), T103, .(T101, T102)) → U2_aag(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
U2_aag(T101, X148, T103, T102, appendB_out_aag(X148, T103, T102)) → appendB_out_aag(.(T101, X148), T103, .(T101, T102))
U6_ag(T86, T84, T30, appendB_out_aag(X123, T86, T85)) → sublistC_out_ag(T86, .(T84, T30))

The argument filtering Pi contains the following mapping:
sublistC_in_ag(x1, x2)  =  sublistC_in_ag(x2)
sublistC_out_ag(x1, x2)  =  sublistC_out_ag
.(x1, x2)  =  .(x1, x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x4)
appendB_in_aag(x1, x2, x3)  =  appendB_in_aag(x3)
appendB_out_aag(x1, x2, x3)  =  appendB_out_aag(x1, x2)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x5)
SUBLISTC_IN_AG(x1, x2)  =  SUBLISTC_IN_AG(x2)
U3_AG(x1, x2, x3, x4)  =  U3_AG(x4)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)
U1_AAG(x1, x2, x3, x4, x5)  =  U1_AAG(x1, x5)
U4_AG(x1, x2, x3, x4)  =  U4_AG(x4)
U5_AG(x1, x2, x3, x4)  =  U5_AG(x4)
U6_AG(x1, x2, x3, x4)  =  U6_AG(x4)
APPENDB_IN_AAG(x1, x2, x3)  =  APPENDB_IN_AAG(x3)
U2_AAG(x1, x2, x3, x4, x5)  =  U2_AAG(x1, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 9 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDB_IN_AAG(X148, T103, T102)

The TRS R consists of the following rules:

sublistC_in_ag([], T16) → sublistC_out_ag([], T16)
sublistC_in_ag(T7, .(T29, T30)) → U3_ag(T7, T29, T30, appendA_in_aag(X56, X57, T30))
appendA_in_aag([], T45, T45) → appendA_out_aag([], T45, T45)
appendA_in_aag(.(T50, X93), X94, .(T50, T51)) → U1_aag(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
U1_aag(T50, X93, X94, T51, appendA_out_aag(X93, X94, T51)) → appendA_out_aag(.(T50, X93), X94, .(T50, T51))
U3_ag(T7, T29, T30, appendA_out_aag(X56, X57, T30)) → sublistC_out_ag(T7, .(T29, T30))
sublistC_in_ag(.(T72, T73), .(T72, T30)) → U4_ag(T72, T73, T30, appendA_in_aag(T73, T39, T30))
U4_ag(T72, T73, T30, appendA_out_aag(T73, T39, T30)) → sublistC_out_ag(.(T72, T73), .(T72, T30))
sublistC_in_ag(T86, .(T84, T30)) → U5_ag(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_ag(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_ag(T86, T84, T30, appendB_in_aag(X123, T86, T85))
appendB_in_aag([], T93, T93) → appendB_out_aag([], T93, T93)
appendB_in_aag(.(T101, X148), T103, .(T101, T102)) → U2_aag(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
U2_aag(T101, X148, T103, T102, appendB_out_aag(X148, T103, T102)) → appendB_out_aag(.(T101, X148), T103, .(T101, T102))
U6_ag(T86, T84, T30, appendB_out_aag(X123, T86, T85)) → sublistC_out_ag(T86, .(T84, T30))

The argument filtering Pi contains the following mapping:
sublistC_in_ag(x1, x2)  =  sublistC_in_ag(x2)
sublistC_out_ag(x1, x2)  =  sublistC_out_ag
.(x1, x2)  =  .(x1, x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x4)
appendB_in_aag(x1, x2, x3)  =  appendB_in_aag(x3)
appendB_out_aag(x1, x2, x3)  =  appendB_out_aag(x1, x2)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x5)
APPENDB_IN_AAG(x1, x2, x3)  =  APPENDB_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDB_IN_AAG(.(T101, X148), T103, .(T101, T102)) → APPENDB_IN_AAG(X148, T103, T102)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDB_IN_AAG(x1, x2, x3)  =  APPENDB_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDB_IN_AAG(.(T101, T102)) → APPENDB_IN_AAG(T102)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDB_IN_AAG(.(T101, T102)) → APPENDB_IN_AAG(T102)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDA_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDA_IN_AAG(X93, X94, T51)

The TRS R consists of the following rules:

sublistC_in_ag([], T16) → sublistC_out_ag([], T16)
sublistC_in_ag(T7, .(T29, T30)) → U3_ag(T7, T29, T30, appendA_in_aag(X56, X57, T30))
appendA_in_aag([], T45, T45) → appendA_out_aag([], T45, T45)
appendA_in_aag(.(T50, X93), X94, .(T50, T51)) → U1_aag(T50, X93, X94, T51, appendA_in_aag(X93, X94, T51))
U1_aag(T50, X93, X94, T51, appendA_out_aag(X93, X94, T51)) → appendA_out_aag(.(T50, X93), X94, .(T50, T51))
U3_ag(T7, T29, T30, appendA_out_aag(X56, X57, T30)) → sublistC_out_ag(T7, .(T29, T30))
sublistC_in_ag(.(T72, T73), .(T72, T30)) → U4_ag(T72, T73, T30, appendA_in_aag(T73, T39, T30))
U4_ag(T72, T73, T30, appendA_out_aag(T73, T39, T30)) → sublistC_out_ag(.(T72, T73), .(T72, T30))
sublistC_in_ag(T86, .(T84, T30)) → U5_ag(T86, T84, T30, appendA_in_aag(T85, T39, T30))
U5_ag(T86, T84, T30, appendA_out_aag(T85, T39, T30)) → U6_ag(T86, T84, T30, appendB_in_aag(X123, T86, T85))
appendB_in_aag([], T93, T93) → appendB_out_aag([], T93, T93)
appendB_in_aag(.(T101, X148), T103, .(T101, T102)) → U2_aag(T101, X148, T103, T102, appendB_in_aag(X148, T103, T102))
U2_aag(T101, X148, T103, T102, appendB_out_aag(X148, T103, T102)) → appendB_out_aag(.(T101, X148), T103, .(T101, T102))
U6_ag(T86, T84, T30, appendB_out_aag(X123, T86, T85)) → sublistC_out_ag(T86, .(T84, T30))

The argument filtering Pi contains the following mapping:
sublistC_in_ag(x1, x2)  =  sublistC_in_ag(x2)
sublistC_out_ag(x1, x2)  =  sublistC_out_ag
.(x1, x2)  =  .(x1, x2)
U3_ag(x1, x2, x3, x4)  =  U3_ag(x4)
appendA_in_aag(x1, x2, x3)  =  appendA_in_aag(x3)
appendA_out_aag(x1, x2, x3)  =  appendA_out_aag(x1, x2)
U1_aag(x1, x2, x3, x4, x5)  =  U1_aag(x1, x5)
U4_ag(x1, x2, x3, x4)  =  U4_ag(x4)
U5_ag(x1, x2, x3, x4)  =  U5_ag(x4)
U6_ag(x1, x2, x3, x4)  =  U6_ag(x4)
appendB_in_aag(x1, x2, x3)  =  appendB_in_aag(x3)
appendB_out_aag(x1, x2, x3)  =  appendB_out_aag(x1, x2)
U2_aag(x1, x2, x3, x4, x5)  =  U2_aag(x1, x5)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPENDA_IN_AAG(.(T50, X93), X94, .(T50, T51)) → APPENDA_IN_AAG(X93, X94, T51)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPENDA_IN_AAG(x1, x2, x3)  =  APPENDA_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPENDA_IN_AAG(.(T50, T51)) → APPENDA_IN_AAG(T51)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPENDA_IN_AAG(.(T50, T51)) → APPENDA_IN_AAG(T51)
    The graph contains the following edges 1 > 1

(22) YES